Two wrongs still don’t make it right.

Two wrongs still don’t make it right.

As you can see in the picture, the cut truss (wrong #1) is pointing right at the whole house fan (wrong #2).

While whole house fans may have been a good idea, once upon a time in some climates, they have virtually no place in modern energy efficient construction. In northern climates they are of particular concern as they are typically NOT adequately insulated and sealed against heat loss in the winter. When they are not insulated and sealed, the natural stack-effect of the home will pull warm air into the attic more or less around the clock.

The idea of these units is to flush the warm daytime air from the home at night, and then pull in the cool night air to cool the home off. Not a bad idea really. While this principle works in older poorly insulated homes, in modern well insulated homes they should not be necessary. Merely opening a few windows on opposite sides’ f the home should achieve the same result.

If the home is overheating during the day, one should look to the causes of that overheating and fixing the overheating as opposed to installing a system that should not be necessary. If one’s home is overheating and one considers it “well insulated,” I would argue that one should perhaps re-think one’s definition of “well insulated” or that perhaps there are other factors contributing to the overheating.  A good question to ask might be, “what are the air sealing abilities of the insulation?”  Not all insulation is created equal.

As a side note, I can pretty easily argue that even newly constructed homes in areas of the country with high cooling needs are NOT adequately insulated to appreciably reduce energy costs. Code requirements for energy conservation are “minimum” standards, and make no distinction between the air sealing characteristics of the various kinds of insulation.

If installed properly, and if used properly, and if maintained properly in the off season, these fans can help reduce air conditioning costs, improve comfort and improve air quality. Please note that this statement includes a lot of “ifs” and their installation can more often result in increased heating costs in the off season.

Another issue that arises from these fans is that if they are not sized properly (and they rarely are) they are capable of drawing more air into the attic than the attic space can get rid of. This can result in pressurizing the attic and minimizing the effectiveness of the fan—oversized or not. Regardless, even if additional venting is installed to compensate, there will then be compromised and possibly inadequate venting of the roof structure for that part of the year when the fan is merely wasting energy. It might be possible to balance these differences, but the reality is that often the different requirements for the different functions are simply not taken into account—or, worse yet, not even possible to take into account. More often than not, when I see them installed in the Northwest, they seem to be installed on the insistence of someone that has moved here from a climate where they worked or were possibly even necessary.

For the installation above, someone is now going to have to incur the cost of removing the fan and repairing the damaged truss. These costs will now need to be added to the increased energy costs created by the installation in the first place

By Charles Buell, Real Estate Inspections in Seattle

If you enjoyed this post, and would like to get notices of new posts to my blog, please subscribe via email in the little box to the right. I promise NO spamming of your email! 🙂

Log homes and energy efficiency

On a recent road trip around the State of Washington, we stayed at a motel constructed of older style Pan Abode buildings built sometime in the late 50’s. 

The structures seemed in remarkably good condition for their age, but the stresses on these structures are perhaps not what they would be in a wetter area of the state–like west of the mountains–in the Seattle area.  The structures seemed well suited to their hot and dry climate.

What I found interesting was the insulating ability of the 4″ thick walls–or their lack of ability would perhaps be more accurate.

This first picture is of the exterior wall.  The red rectangle corresponds to an area at the interior that will be discussed below.

Pan-abode type building

This next picture is what the wall structure looks like.  You can see the double tongue and group shape with the wall being approximately 4″ thick.

Pan-abode type wall structure

On the interior, with thermal camera, the wall and pillow temperatures show in the next two pictures.

Thermal image Thermal image

In this next picture we see the wall with the pillows moved away from the wall to reveal how the wall was “insulated” by the pillows.  The wall, heated up by the direct sun shining on it at the exterior, could not give up its heat to the interior as readily as the other areas of the wall. Thermal imageThermal image

My understanding is that modern Pan Abode structures are a double-wall type of construction that allows for the installation of insulation inside the walls.  This would certainly be required by modern energy codes for both heating and cooling. 

Regardless, these pictures demonstrate very well how poor 4″ of wood is as insulation (about R-4).  By themselves, it would take exceptionally large logs to meet modern energy efficiency standards.

By Charles Buell, Real Estate Inspections in Seattle

If you enjoyed this post, and would like to get notices of new posts to my blog, please subscribe via email in the little box to the right. I promise NO spamming of your email! 🙂

What is a little missing insulation between friends?

Sometimes it is the little things that get you.

However, these little things can end up costing you a lot of money over time.

At a recent inspection I had a house where the insulation details were not well thought out.  Without going into a discussion about the “type” of insulation, lets just discuss in the simplest of terms how the system was working—or not working as the case might be. 

The following sketch shows how the walls are insulated up to the ceiling and then the roof plane itself is insulated.  What got missed was the wall between the roof and the ceiling.  This space above the ceiling is essentially “conditioned” space and the short wall between has to be insulated to have continuous insulation around the conditioned space.

This next picture shows what that un-insulated area looks like with thermal imaging from the exterior.  However this is a space between the second floor and the main floor ceiling.

Going back to the original drawing, here is an exterior view of that un-insulated space—as seen by thermal imaging.  The un-insulated areas appear warmer (the white-yellow areas)

The same areas of the above picture as seen from the inside of the attic space with the un-insulated areas appearing “cooler” (the black areas).

These areas will need to be well-insulated to prevent wasting of energy that increases both heating and cooling loads of the home. 

The fiberglass insulation should be encapsulated, and for more information about that:  All Fiberglass Insulation Must be Encapsulated.

 By Charles Buell, Real Estate Inspections in Seattle

If you enjoyed this post, and would like to get notices of new posts to my blog, please subscribe via email in the little box to the right. I promise NO spamming of your email! 🙂